Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.441
Filtrar
1.
J Mater Sci Mater Med ; 35(1): 24, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526738

RESUMO

Multi-walled Carbon Nanotubes (MWCNTs) are inert structures with high aspect ratios that are widely used as vehicles for targeted drug delivery in cancer and many other diseases. They are largely non-toxic in nature however, when cells are exposed to these nanotubes for prolonged durations or at high concentrations, they show certain adverse effects. These include cytotoxicity, inflammation, generation of oxidative stress, and genotoxicity among others. To combat such adverse effects, various moieties can be attached to the surface of these nanotubes. Curcumin is a known anti-inflammatory, antioxidant and cytoprotective compound derived from a medicinal plant called Curcuma longa. In this study, we have synthesized and characterized Curcumin coated-lysine functionalized MWCNTs and further evaluated the cytoprotective, anti-inflammatory, antioxidant and antiapoptotic effect of Curcumin coating on the surface of MWCNTs. The results show a significant decrease in the level of inflammatory molecules like IL-6, IL-8, IL-1ß, TNFα and NFκB in cells exposed to Curcumin-coated MWCNTs as compared to the uncoated ones at both transcript and protein levels. Further, compared to the uncoated samples, there is a reduction in ROS production and upregulation of antioxidant enzyme-Catalase in the cells treated with Curcumin-coated MWCNTs. Curcumin coating also helped in recovery of mitochondrial membrane potential in the cells exposed to MWCNTs. Lastly, cells exposed to Curcumin-coated MWCNTs showed reduced cell death as compared to the ones exposed to uncoated MWCNTs. Our findings suggest that coating of Curcumin on the surface of MWCNTs reduces its ability to cause inflammation, oxidative stress, and cell death.


Assuntos
Curcumina , Nanotubos de Carbono , Humanos , Curcumina/farmacologia , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/química , Antioxidantes/farmacologia , Inflamação , Anti-Inflamatórios/farmacologia
2.
Environ Toxicol Pharmacol ; 107: 104413, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485102

RESUMO

Carbon nanotubes (CNTs) vary in physicochemical properties which makes risk assessment challenging. Mice were pulmonary exposed to 26 well-characterized CNTs using the same experimental design and followed for one day, 28 days or 3 months. This resulted in a unique dataset, which was used to identify physicochemical predictors of pulmonary inflammation and systemic acute phase response. MWCNT diameter and SWCNT specific surface area were predictive of lower and higher neutrophil influx, respectively. Manganese and iron were shown to be predictive of higher neutrophil influx at day 1 post-exposure, whereas nickel content interestingly was predictive of lower neutrophil influx at all three time points and of lowered acute phase response at day 1 and 3 months post-exposure. It was not possible to separate effects of properties such as specific surface area and length in the multiple regression analyses due to co-variation.


Assuntos
Nanotubos de Carbono , Pneumonia , Camundongos , Animais , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/química , Reação de Fase Aguda , Líquido da Lavagem Broncoalveolar/química , Pulmão , Pneumonia/induzido quimicamente , Camundongos Endogâmicos C57BL
3.
Chem Biol Interact ; 392: 110925, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38452846

RESUMO

In recent years, carbon nanotubes (CNTs) have become one of the most promising materials for the technology industry. However, due to the extensive usage of these materials, they may be released into the environment, and cause toxicities to the organism. Here, their acute toxicities in zebrafish embryos and larvae were evaluated by using various assessments that may provide us with a novel perspective on their effects on aquatic animals. Before conducting the toxicity assessments, the CNTs were characterized as multiwall carbon nanotubes (MWCNTs) functionalized with hydroxyl and carboxyl groups, which improved their solubility and dispersibility. Based on the results, abnormalities in zebrafish behaviors were observed in the exposed groups, indicated by a reduction in tail coiling frequency and alterations in the locomotion as the response toward photo and vibration stimuli that might be due to the disruption in the neuromodulatory system and the formation of reactive oxygen species (ROS) by MWCNTs. Next, based on the respiratory rate assay, exposed larvae consumed more oxygen, which may be due to the injuries in the larval gill by the MWCNTs. Finally, even though no irregularity was observed in the exposed larval cardiac rhythm, abnormalities were shown in their cardiac physiology and blood flow with significant downregulation in several cardiac development-related gene expressions. To sum up, although the following studies are necessary to understand the exact mechanism of their toxicity, the current study demonstrated the environmental implications of MWCNTs in particularly low concentrations and short-term exposure, especially to aquatic organisms.


Assuntos
Nanotubos de Carbono , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Nanotubos de Carbono/toxicidade , Larva , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Embrião não Mamífero/metabolismo , Poluentes Químicos da Água/toxicidade
4.
Cardiovasc Toxicol ; 24(4): 408-421, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38411850

RESUMO

Halloysite nanotubes (HNTs) are nanomaterials (NMs) derived from natural clays and have been considered as biocompatible NMs for biomedical uses. However, the cardiovascular toxicity of HNTs has not been thoroughly investigated. In this study, we compared the cardiotoxicity of HNTs and multi-walled carbon nanotubes (MWCNTs), focusing on the changes in Kruppel-like factor (KLF)-mediated signaling pathways. Mice were intravenously injected with 50 µg NMs, once a day, for 5 days, and then mouse hearts were removed for experiments. While HNTs or MWCNTs did not induce obvious pathological changes, RNA-sequencing data suggested the alterations of KLF gene expression. We further confirmed an increase of Klf15 positive cells, accompanied by changes in Klf15-related gene ontology (GO) terms. We noticed that most of the changed GO terms are related with the regulation of gene expression, and we confirmed that the NMs increased myoneurin (Mynn) but decreased snail family transcriptional repressor 1 (Snai1), two transcription factors (TFs) related with Klf15. Besides, the changed GO terms also include metal ion binding and positive regulation of glucose import, and we verified an increase of phosphoenolpyruvate carboxykinase 1 (Pck1) and insulin receptor (Insr). However, HNTs and MWCNTs only showed minimal impact on cell death signaling pathways, and no increase in apoptotic sites was observed after NM treatment. We concluded that intravenous administration of HNTs and MWCNTs activated a protective TF, namely Klf15 in mouse aortas, to alter gene expression and signaling pathways related with metal ion binding and glucose import.


Assuntos
Nanotubos de Carbono , Animais , Camundongos , Nanotubos de Carbono/toxicidade , Argila , Injeções Intravenosas , Fatores de Transcrição Kruppel-Like/genética , Glucose
5.
J Toxicol Environ Health A ; 87(9): 398-418, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38385605

RESUMO

Nanoribbons of imidacloprid, a systemic and chloronicotinyl insecticide, were successfully synthesized by laser-induced fragmentation/exfoliation of imidacloprid powders suspended in water, with widths ranging from 160 to 470 nm, lengths in the micron scale, and thickness of a few atoms layers. The aim of the present study was to examine the effects of acute and chronic exposure to imidacloprid (IMC) bulk and compare its effects with synthesized imidacloprid nanoribbons (IMCNR) on larval and adult viability, developmental time, olfactory capacity, longevity, productivity, and genotoxicity in Drosophila melanogaster. Larvae or adults were exposed at 0.01, 0.02, or 0.03 ppm to IMC or IMCNR. Results demonstrated that IMCNR produced a significant reduction in viability and olfactory ability. IMC did not significantly alter viability and olfactory ability. Similarly, marked differences on longevity were detected between treatment with IMC and IMCNR where the lifespan of males treated with IMC was significantly higher than control while IMCNR produced a reduction. As for productivity, developmental time, and genotoxicity, no marked differences were found between both forms of IMC.


Assuntos
Inseticidas , Nanotubos de Carbono , Nitrocompostos , Animais , Masculino , Drosophila melanogaster/genética , Nanotubos de Carbono/toxicidade , Neonicotinoides/toxicidade , Inseticidas/toxicidade , Larva , Mutação
6.
BMC Plant Biol ; 24(1): 116, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38365618

RESUMO

Water deficit stress is one of the most significant environmental abiotic factors influencing plant growth and metabolism globally. Recently, encouraging outcomes for the use of nanomaterials in agriculture have been shown to reduce the adverse effects of drought stress on plants. The present study aimed to investigate the impact of various carbon nanomaterials (CNMs) on the physiological, morphological, and biochemical characteristics of bell pepper plants subjected to water deficit stress conditions. The study was carried out as a factorial experiment using a completely randomized design (CRD) in three replications with a combination of three factors. The first factor considered was irrigation intensity with three levels [(50%, 75%, and 100% (control) of the field capacity (FC)] moisture. The second factor was the use of carbon nanomaterials [(fullerene C60, multi-walled carbon nanotubes (MWNTs) and graphene nanoplatelets (GNPs)] at various concentrations [(control (0), 100, 200, and 1000 mg/L)]. The study confirmed the foliar uptake of CNMs using the Scanning Electron Microscopy (SEM) technique. The effects of the CNMs were observed in a dose-dependent manner, with both stimulatory and toxicity effects being observed. The results revealed that exposure to MWNTs (1000 mg/L) under well-watered irrigation, and GNPs treatment (1000 mg/L) under severe drought stress (50% FC) significantly (P < 0.01) improved fruit production and fruit dry weight by 76.2 and 73.2% as compared to the control, respectively. Also, a significant decrease (65.9%) in leaf relative water content was obtained in plants subjected to soil moisture of 50% FC over the control. Treatment with GNPs at 1000 mg/L under 50% FC increased electrolyte leakage index (83.6%) compared to control. Foliar applied MWNTs enhanced the leaf gas exchange, photosynthesis rate, and chlorophyll a and b concentrations, though decreased the oxidative shock in leaves which was demonstrated by the diminished electrolyte leakage index and upgrade in relative water content and antioxidant capacity compared to the control. Plants exposed to fullerene C60 at 100 and 1000 mg/L under soil moisture of 100 and 75% FC significantly increased total flavonoids and phenols content by 63.1 and 90.9%, respectively, as compared to the control. A significant increase (184.3%) in antioxidant activity (FRAP) was observed in plants exposed to 200 mg/L MWCNTs under irrigation of 75% FC relative to the control. The outcomes proposed that CNMs could differentially improve the plant and fruit characteristics of bell pepper under dry conditions, however, the levels of changes varied among CNMs concentrations. Therefore, both stimulatory and toxicity effects of employed CNMs were observed in a dose-dependent manner. The study concludes that the use of appropriate (type/dose) CNMs through foliar application is a practical tool for controlling the water shortage stress in bell pepper. These findings will provide the basis for more research on CNMs-plant interactions, and with help to ensure their safe and sustainable use within the agricultural chains.


Assuntos
Capsicum , Fulerenos , Grafite , Nanotubos de Carbono , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/química , Capsicum/fisiologia , Clorofila A , Grafite/química , Desidratação , Antioxidantes/metabolismo , Água/metabolismo , Solo
7.
ACS Biomater Sci Eng ; 10(3): 1403-1417, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38308598

RESUMO

Assessing blood compatibility is crucial before in vivo procedures and is considered more reliable than many in vitro tests. This study examines the physiochemical properties and blood compatibility of bioactive powders ((0.5-2 wt % carbon nanotube (CNT)/alumina)-20 wt %)) produced through a heterocoagulation colloidal technique followed by ball milling with hydroxyapatite (HAp). The 1 wt % CNT composite demonstrated a surface charge ∼5 times higher than HAp at pH 7.4, with a value of -11 mV compared to -2 mV. This increase in electrostatic charge is desirable for achieving hemocompatibility, as evidenced by a range of blood compatibility assessments, including hemolysis, blood clotting, platelet adhesion, platelet activation, and coagulation assays (prothrombin time (PT) and activated partial thrombin time (aPTT)). The 1 wt % CNT composite exhibited hemolysis ranging from 2 to 7%, indicating its hemocompatibility. In the blood clot investigation, the absorbance values for 1-2 wt % CNT samples were 0.927 ± 0.038 and 1.184 ± 0.128, respectively, indicating their nonthrombogenicity. Additionally, the percentage of platelet adhered on the 1 wt % CNT sample (∼5.67%) showed a ∼2.5-fold decrement compared to the clinically used negative control, polypropylene (∼13.73%). The PT and aPTT experiments showed no difference in the coagulation time for CNT samples even at higher concentrations, unlike HAC2 (80 mg). In conclusion, the 1 wt % CNT sample was nontoxic to human blood, making it more hemocompatible, nonhemolytic, and nonthrombogenic than other samples. This reliable study reduces the need for additional in vitro and in vivo studies before clinical trials, saving time and cost.


Assuntos
Durapatita , Nanotubos de Carbono , Humanos , Durapatita/química , Durapatita/farmacologia , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/química , Hemólise , Plaquetas , Adesividade Plaquetária
8.
Part Fibre Toxicol ; 21(1): 1, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225661

RESUMO

BACKGROUND: As the demand and application of engineered nanomaterials have increased, their potential toxicity to the central nervous system has drawn increasing attention. Tunneling nanotubes (TNTs) are novel cell-cell communication that plays a crucial role in pathology and physiology. However, the relationship between TNTs and nanomaterials neurotoxicity remains unclear. Here, three types of commonly used engineered nanomaterials, namely cobalt nanoparticles (CoNPs), titanium dioxide nanoparticles (TiO2NPs), and multi-walled carbon nanotubes (MWCNTs), were selected to address this limitation. RESULTS: After the complete characterization of the nanomaterials, the induction of TNTs formation with all of the nanomaterials was observed using high-content screening system and confocal microscopy in both primary astrocytes and U251 cells. It was further revealed that TNT formation protected against nanomaterial-induced neurotoxicity due to cell apoptosis and disrupted ATP production. We then determined the mechanism underlying the protective role of TNTs. Since oxidative stress is a common mechanism in nanotoxicity, we first observed a significant increase in total and mitochondrial reactive oxygen species (namely ROS, mtROS), causing mitochondrial damage. Moreover, pretreatment of U251 cells with either the ROS scavenger N-acetylcysteine or the mtROS scavenger mitoquinone attenuated nanomaterial-induced neurotoxicity and TNTs generation, suggesting a central role of ROS in nanomaterials-induced TNTs formation. Furthermore, a vigorous downstream pathway of ROS, the PI3K/AKT/mTOR pathway, was found to be actively involved in nanomaterials-promoted TNTs development, which was abolished by LY294002, Perifosine and Rapamycin, inhibitors of PI3K, AKT, and mTOR, respectively. Finally, western blot analysis demonstrated that ROS and mtROS scavengers suppressed the PI3K/AKT/mTOR pathway, which abrogated TNTs formation. CONCLUSION: Despite their biophysical properties, various types of nanomaterials promote TNTs formation and mitochondrial transfer, preventing cell apoptosis and disrupting ATP production induced by nanomaterials. ROS/mtROS and the activation of the downstream PI3K/AKT/mTOR pathway are common mechanisms to regulate TNTs formation and mitochondrial transfer. Our study reveals that engineered nanomaterials share the same molecular mechanism of TNTs formation and intercellular mitochondrial transfer, and the proposed adverse outcome pathway contributes to a better understanding of the intercellular protection mechanism against nanomaterials-induced neurotoxicity.


Assuntos
Estruturas da Membrana Celular , Nanotubos de Carbono , Nanotubos , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Nanotubos de Carbono/toxicidade , Serina-Treonina Quinases TOR/metabolismo , Neuroglia/metabolismo , Trifosfato de Adenosina , Apoptose
9.
Part Fibre Toxicol ; 21(1): 3, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297314

RESUMO

BACKGROUND: Malignant mesothelioma is an aggressive cancer that often originates in the pleural and peritoneal mesothelium. Exposure to asbestos is a frequent cause. However, studies in rodents have shown that certain multiwalled carbon nanotubes (MWCNTs) can also induce malignant mesothelioma. The exact mechanisms are still unclear. To gain further insights into molecular pathways leading to carcinogenesis, we analyzed tumors in Wistar rats induced by intraperitoneal application of MWCNTs and amosite asbestos. Using transcriptomic and epigenetic approaches, we compared the tumors by inducer (MWCNTs or amosite asbestos) or by tumor type (sarcomatoid, epithelioid, or biphasic). RESULTS: Genome-wide transcriptome datasets, whether grouped by inducer or tumor type, showed a high number of significant differentially expressed genes (DEGs) relative to control peritoneal tissues. Bioinformatic evaluations using Ingenuity Pathway Analysis (IPA) revealed that while the transcriptome datasets shared commonalities, they also showed differences in DEGs, regulated canonical pathways, and affected molecular functions. In all datasets, among highly- scoring predicted canonical pathways were Phagosome Formation, IL8 Signaling, Integrin Signaling, RAC Signaling, and TREM1 Signaling. Top-scoring activated molecular functions included cell movement, invasion of cells, migration of cells, cell transformation, and metastasis. Notably, we found many genes associated with malignant mesothelioma in humans, which showed similar expression changes in the rat tumor transcriptome datasets. Furthermore, RT-qPCR revealed downregulation of Hrasls, Nr4a1, Fgfr4, and Ret or upregulation of Rnd3 and Gadd45b in all or most of the 36 tumors analyzed. Bisulfite sequencing of Hrasls, Nr4a1, Fgfr4, and Ret revealed heterogeneity in DNA methylation of promoter regions. However, higher methylation percentages were observed in some tumors compared to control tissues. Lastly, global 5mC DNA, m6A RNA and 5mC RNA methylation levels were also higher in tumors than in control tissues. CONCLUSIONS: Our findings may help better understand how exposure to MWCNTs can lead to carcinogenesis. This information is valuable for risk assessment and in the development of safe-by-design strategies.


Assuntos
Amianto , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Nanotubos de Carbono , Humanos , Ratos , Animais , Mesotelioma Maligno/complicações , Mesotelioma Maligno/genética , Amianto Amosita/toxicidade , Nanotubos de Carbono/toxicidade , Mesotelioma/induzido quimicamente , Mesotelioma/genética , Transcriptoma , Ratos Wistar , Amianto/toxicidade , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Metilação de DNA , Epigênese Genética , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , 60623 , Antígenos de Diferenciação/toxicidade
10.
Toxicol Appl Pharmacol ; 483: 116820, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38218205

RESUMO

Carbon nanotubes (CNTs) are emerging pollutants of occupational and environmental health concern. While toxicological mechanisms of CNTs are emerging, there is paucity of information on their modulatory effects on susceptibility to infections. Here, we investigated cellular and molecular events underlying the effect of multi-walled CNT (MWCNT) exposure on susceptibility to Streptococcus pneumoniae infection in our 28-day sub-chronic exposure mouse model. Data indicated reduced phagocytic function in alveolar macrophages (AMs) from MWCNT-exposed lungs evidenced by lower pathogen uptake in 1-h infection assay. At 24-h post-infection, intracellular pathogen count in exposed AMs showed 2.5 times higher net increase (2-fold in vehicle- versus 5-fold in MWCNT-treated), indicating a greater rate of intracellular multiplication and/or survival due to MWCNT exposure. AMs from MWCNT-exposed lungs exhibited downregulation of pathogen-uptake receptors CD163, Phosphatidyl-serine receptor (Ptdsr), and Macrophage scavenger receptors class A type 1 (Msr1) and type 2 (MSr2). In whole lung, MWCNT exposure shifted the macrophage polarization state towards the immunosuppressive phenotype M2b and increased the CD11c+ dendritic cell population required to activate the adaptive immune response. Notably, the MWCNT pre-exposure dysregulated T-cell immunity, evidenced by diminished CD4 and Th17 response, and exacerbated Th1 and Treg responses (skewed Th17/Treg ratio), thereby favoring the pneumococcal infection. Overall, these findings indicated that MWCNT exposure compromises both innate and adaptive immunity leading to diminished host lung defense against pneumonia infection. To our knowledge, this is the first report on an immunomodulatory role of CNT pre-exposure on pneumococcal infection susceptibility due to dysregulation of both innate and adaptive immunity targets.


Assuntos
Nanopartículas , Nanotubos de Carbono , Pneumonia Pneumocócica , Camundongos , Animais , Nanotubos de Carbono/toxicidade , Camundongos Endogâmicos C57BL , Pulmão , Imunidade , Nanopartículas/toxicidade
11.
Artigo em Inglês | MEDLINE | ID: mdl-37951286

RESUMO

In recent years, carbon nanotubes (CNTs) have gained tremendous attention due to their widespread application. Previous research indicated that carbon nanomaterials can affect the toxicity of some pollutants. In this study, we investigated the influence of multi-walled CNTs (MWCNTs) on the toxicity of ZnO nanoparticles (ZnONPs) in the intestine of common carp (Cyprinus carpio). After four-week exposure, histopathological observation and TUNEL assay showed concentration ratio-dependent intestinal lesions and apoptosis, with the most severe in the HSC-ZnONPs group (50 mg L-1 ZnONPs and 2.5 mg L-1 MWCNTs), less severe in the ZnONPs group (50 mg L-1 ZnONPs) and the least in the LSC-ZnONPs group (50 mg L-1 ZnONPs and 0.25 mg L-1 MWCNTs). Furthermore, ICP-OES indicated that intercellular zinc accumulation was significantly decreased by the presence of the MWCNTs, which suggested the varied contribution of ZnONPs to intestine injury in different groups. Moreover, 16 s rDNA sequencing revealed that ZnONPs alone and in combination with MWCNTs significantly altered the microbial community diversity and composition of the gut microbiota compared with controls. In addition, the predominant phylum, class, order, family, and genus were significantly different among these groups. In conclusion, the influence of MWCNTs on the toxicity of ZnONPs was related to the concentration and concentration ratio of the mixture.


Assuntos
Carpas , Microbiota , Nanotubos de Carbono , Óxido de Zinco , Animais , Óxido de Zinco/toxicidade , Nanotubos de Carbono/toxicidade , Intestinos , Apoptose
12.
Environ Res ; 241: 117619, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37952855

RESUMO

Multi-walled carbon nanotube (MWCNT) exposure was observed to cause damages on the viability of ocular cells, however, the underlying mechanisms remain not well understood. Epigenetic alterations that regulate gene expression have been identified as a major responsiveness to environmental challenge. Thus, the aim of this study was to screen methylation-regulated genes involved in MWCNT exposure. The Illumina Human Methylation 850 K array was employed to determine the genome-wide DNA methylation profile of human retinal pigment epithelial cell line (ARPE-19) exposed to 50% inhibition concentration of MWCNTs (100 µg/ml) for 24 h or without (n = 3 for each group). Then, the transcriptome data obtained by high-throughput RNA sequencing previously were integrated with DNA methylome to identify the overlapped genes. As a result, the integrative bioinformatics analysis identified that compared with controls, FA complementation group C (FANCC) was hypermethylated and downregulated in MWCNT-exposed ARPE-19 cells. Quantitative real-time polymerase chain reaction analysis confirmed the mRNA expression level of FANCC was significantly decreased following MWCNT treatment and the addition of DNA methylation inhibitor 5-Aza-deoxycytidine (10 µM) reversed this decrease. Pyrosequencing analysis further validated the hypermethylation status at the 5'-untranslated promoter region of FANCC (cg14583550) in MWCNT-exposed ARPE-19 cells. Protein-protein interaction network and function analyses predicted that FANCC may contribute to MWCNT-induced cytotoxicity by interacting with heat shock protein 90 beta family member 1 and then upregulating cytokine interleukin-6 and apoptosis biomarker caspase 3. In conclusion, the present study links the epigenetic modification of FANCC with the pathogenesis of MWCNT-induced retinal toxicity.


Assuntos
Metilação de DNA , Nanotubos de Carbono , Humanos , Nanotubos de Carbono/toxicidade , Células Epiteliais , Epigênese Genética , Linhagem Celular , Proteína do Grupo de Complementação C da Anemia de Fanconi/metabolismo
13.
Toxicol Appl Pharmacol ; 482: 116784, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070752

RESUMO

Potential genotoxicity and carcinogenicity of carbon nanotubes (CNT), as well as the underlying mechanisms, remains a pressing topic. The study aimed to evaluate and compare the genotoxic effect and mechanisms of DNA damage under exposure to different types of CNT. Immortalized human cell lines of respiratory origin BEAS-2B, A549, MRC5-SV40 were exposed to three types of CNT: MWCNT Taunit-M, pristine and purified SWCNT TUBALL™ at concentrations in the range of 0.0006-200 µg/ml. Data on the CNT content in the workplace air were used to calculate the lower concentration limit. The genotoxic potential of CNTs was investigated at non-cytotoxic concentrations using a DNA comet assay. We explored reactive oxygen species (ROS) formation, direct genetic material damage, and expression of a profibrotic factor TGFB1 as mechanisms related to genotoxicity upon CNT exposure. An increase in the number of unstable DNA regions was observed at a subtoxic concentration of CNT (20 µg/ml), with no genotoxic effects at concentrations corresponding to industrial exposures being found. While the three test articles of CNTs exhibited comparable genotoxic potential, their mechanisms appeared to differ. MWCNTs were found to penetrate the nucleus of respiratory cells, potentially interacting directly with genetic material, as well as to enhance ROS production and TGFB1 gene expression. For A549 and MRC5-SV40, genotoxicity depended mainly on MWCNT concentration, while for BEAS-2B - on ROS production. Mechanisms of SWCNT genotoxicity were not so obvious. Oxidative stress and increased expression of profibrotic factors could not fully explain DNA damage under SWCNT exposure, and other mechanisms might be involved.


Assuntos
Nanotubos de Carbono , Humanos , Nanotubos de Carbono/toxicidade , Espécies Reativas de Oxigênio , Dano ao DNA , Linhagem Celular , DNA , Sobrevivência Celular
14.
Environ Res ; 245: 118072, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157971

RESUMO

Fish acute toxicity tests are commonly used in aquatic environmental risk assessments, being required in different international substances regulations. A general trend in the toxicity testing of nanomaterials (NMs) has been to use standardized aquatic toxicity tests. However, as these tests were primarily developed for soluble chemical, issues regarding particle dissolution, agglomeration or sedimentation during the time of exposure are not considered when reporting the toxicity of NMs. The aim of this study was to characterize the NM behaviour throughout the fish acute test and to provide criteria to assay the toxicity of nine NMs based on TiO2, ZnO, SiO2, BaSO4, bentonite, and carbon nanotubes, on rainbow trout following OECD Test Guideline (TG) nº203. Our results showed the importance of conducting a preliminary test (without fish) when working with NMs. They provide valuable information on, sample monitoring, agglomeration, sedimentation, dissolution, actual concentrations of NMs, needed to design the test. Among the NMs tested, only bentonite nanoparticles were stable during the 96-h pre-test and test in aquarium water. In contrast, the remaining NMs exhibited considerable loss and sedimentation within the first 24 h. The high sedimentation observed for almost all NMs highlights the need of consistently measuring the concentrations throughout the entire duration of the fish acute toxicity test to make reliable concentration-response relationships. Notable differences emerged in LC50 values when using actual concentrations as nominal concentrations overestimated concentrations by up to 85.6%. Among all NMs tested, only ZnO NMs were toxic to rainbow trout. A flow chart was specifically developed for OECD TG 203, aiding users in making informed decisions regarding the selection of test systems and necessary modifications to ensure accurate, reliable, and reusable toxicity data. Our findings might contribute to the harmonization of TG 203 improving result reproducibility and interpretability and supporting the development of read-across and QSAR models.


Assuntos
Nanoestruturas , Nanotubos de Carbono , Óxido de Zinco , Animais , Dióxido de Silício , Nanotubos de Carbono/toxicidade , Reprodutibilidade dos Testes , Bentonita , Nanoestruturas/química , Peixes
15.
Sci Total Environ ; 913: 169483, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38151128

RESUMO

Since the discovery of the third allotropic carbon form, carbon-based one-dimensional nanomaterials (1D-CNMs) became an attractive and new technology with different applications that range from electronics to biomedical and environmental technologies. Despite their broad application, data on environmental risks remain limited. Fish are widely used in ecotoxicological studies and biomonitoring programs. Thus, the aim of the current study was to summarize and critically analyze the literature focused on investigating the bioaccumulation and ecotoxicological impacts of 1D-CNMs (carbon nanotubes and nanofibers) on different fish species. In total, 93 articles were summarized and analyzed by taking into consideration the following aspects: bioaccumulation, trophic transfer, genotoxicity, mutagenicity, organ-specific toxicity, oxidative stress, neurotoxicity and behavioral changes. Results have evidenced that the analyzed studies were mainly carried out with multi-walled carbon nanotubes, which were followed by single-walled nanotubes and nanofibers. Zebrafish (Danio rerio) was the main fish species used as model system. CNMs' ecotoxicity in fish depends on their physicochemical features, functionalization, experimental design (e.g. exposure time, concentration, exposure type), as well as on fish species and developmental stage. CNMs' action mechanism and toxicity in fish are associated with oxidative stress, genotoxicity, hepatotoxicity and cardiotoxicity. Overall, fish are a suitable model system to assess the ecotoxicity of, and the environmental risk posed by, CNMs.


Assuntos
Nanofibras , Nanoestruturas , Nanotubos de Carbono , Animais , Nanotubos de Carbono/toxicidade , Nanofibras/toxicidade , Peixe-Zebra , Nanoestruturas/toxicidade , Estresse Oxidativo
16.
FASEB J ; 38(1): e23350, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38071600

RESUMO

Lung diseases characterized by type 2 inflammation are reported to occur with a female bias in prevalence/severity in both humans and mice. This includes previous work examining multi-walled carbon nanotube (MWCNT)-induced eosinophilic inflammation, in which a more exaggerated M2a phenotype was observed in female alveolar macrophages (AMs) compared to males. The mechanisms responsible for this sex difference in AM phenotype are still unclear, but estrogen receptor (ER) signaling is a likely contributor. Accordingly, male AMs downregulated ERα expression after MWCNT exposure while female AMs did not. Thus, ER antagonist Fulvestrant was administered prior to MWCNT instillation. In females, Fulvestrant significantly attenuated MWCNT-induced M2a gene expression and eosinophilia without affecting IL-33. In males, Fulvestrant did not affect eosinophil recruitment but reduced IL-33 and M2a genes compared to controls. Regulation of cholesterol efflux and oxysterol synthesis is a potential mechanism through which estrogen promotes the M2a phenotype. Levels of oxysterols 25-OHC and 7α,25-OHC were higher in the airways of MWCNT-exposed males compared to MWCNT-females, which corresponds with the lower IL-1ß production and greater macrophage recruitment previously observed in males. Sex-based changes in cholesterol efflux transporters Abca1 and Abcg1 were also observed after MWCNT exposure with or without Fulvestrant. In vitro culture with estrogen decreased cellular cholesterol and increased the M2a response in female AMs, but did not affect cholesterol content in male AMs and reduced M2a polarization. These results reveal the modulation of (oxy)sterols as a potential mechanism through which estrogen signaling may regulate AM phenotype resulting in sex differences in downstream respiratory inflammation.


Assuntos
Pulmão , Nanotubos de Carbono , Feminino , Masculino , Humanos , Animais , Camundongos , Pulmão/metabolismo , Interleucina-33/metabolismo , Nanotubos de Carbono/toxicidade , Caracteres Sexuais , Fulvestranto , Inflamação/induzido quimicamente , Inflamação/metabolismo , Macrófagos/metabolismo , Colesterol/metabolismo , Camundongos Endogâmicos C57BL
17.
J Toxicol Sci ; 48(12): 617-639, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38044124

RESUMO

Although toxicities of multiwalled carbon nanotube (MWCNT) have been found to be related with activities of macrophages phagocytosing the fibers, the exact relationship between macrophage population and pathogenesis of fibrosis and mesotheliomas induced by MWCNTs is largely unknown. CCL2-CCR2 axis, a major monocyte/macrophage infiltration route, is thought to be involved in not only acute inflammation but also the formation of tumor microenvironment. We therefore described a time-course of alteration of macrophage population in an attempt to clarify the contribution of the Ccr2 gene to mesotheliomagenesis. Wild-type (WT) C57BL/6 mice and Ccr2-knockout (KO) mice were intraperitoneally administered with MWNT-7 and were sequentially necropsied at 1, 7, 28, 90, and 245 day(s) after the injection. Peritoneal fibrosis was prominent in all MWCNT-treated mice, with a lower severity in the KO mice. No differences were observed in the incidences of neoplastic lesions of mesothelia between WT and KO mice. A flow cytometric analysis revealed that after gross disappearance of macrophages after MWCNT exposure, small peritoneal macrophages (SPMs) were exclusively refurbished by the CCR2-dependent route at day 1 (as Ly-6C+MHC class II- cells), followed by additional CCR2-independent routes (as Ly-6C-MHC class II- cells); i.e., the only route in KO mice; with a delay of 1-7 days. The SPMs derived from both routes appeared to differentiate into maturated cells as Ly-6C-MHC class II+, whose ratio increased in a time-dependent manner among the total SPM population. Additionally, most macrophages expressed M1-like features, but a small fraction of macrophages exhibited an M1/M2 mixed status in MWCNT-treated animals. Our findings demonstrate a long-persistent activation of the CCL2-CCR2 axis after MWCNT exposure and enable a better understanding of the participation and potential roles of SPMs in fibrous material-induced chronic toxicities.


Assuntos
Mesotelioma , Nanotubos de Carbono , Camundongos , Animais , Nanotubos de Carbono/toxicidade , Macrófagos Peritoneais , Peritônio , Camundongos Endogâmicos C57BL , Fibrose , Mesotelioma/induzido quimicamente , Mesotelioma/genética , Camundongos Knockout , Microambiente Tumoral
18.
ACS Nano ; 17(24): 24919-24935, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38051272

RESUMO

Boron nitride (BN) nanomaterials have drawn a lot of interest in the material science community. However, extensive research is still needed to thoroughly analyze their safety profiles. Herein, we investigated the pulmonary impact and clearance of two-dimensional hexagonal boron nitride (h-BN) nanosheets and boron nitride nanotubes (BNNTs) in mice. Animals were exposed by single oropharyngeal aspiration to h-BN or BNNTs. On days 1, 7, and 28, bronchoalveolar lavage (BAL) fluids and lungs were collected. On one hand, adverse effects on lungs were evaluated using various approaches (e.g., immune response, histopathology, tissue remodeling, and genotoxicity). On the other hand, material deposition and clearance from the lungs were assessed. Two-dimensional h-BN did not cause any significant immune response or lung damage, although the presence of materials was confirmed by Raman spectroscopy. In addition, the low aspect ratio h-BN nanosheets were internalized rapidly by phagocytic cells present in alveoli, resulting in efficient clearance from the lungs. In contrast, high aspect ratio BNNTs caused a strong and long-lasting inflammatory response, characterized by sustained inflammation up to 28 days after exposure and the activation of both innate and adaptive immunity. Moreover, the presence of granulomatous structures and an indication of ongoing fibrosis as well as DNA damage in the lung parenchyma were evidenced with these materials. Concurrently, BNNTs were identified in lung sections for up to 28 days, suggesting long-term biopersistence, as previously demonstrated for other high aspect ratio nanomaterials with poor lung clearance such as multiwalled carbon nanotubes (MWCNTs). Overall, we reveal the safer toxicological profile of BN-based two-dimensional nanosheets in comparison to their nanotube counterparts. We also report strong similarities between BNNTs and MWCNTs in lung response, emphasizing their high aspect ratio as a major driver of their toxicity.


Assuntos
Nanoestruturas , Nanotubos de Carbono , Camundongos , Animais , Nanotubos de Carbono/toxicidade , Nanoestruturas/toxicidade , Pulmão/patologia , Compostos de Boro/toxicidade , Compostos de Boro/química
19.
Food Chem Toxicol ; 182: 114188, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37967788

RESUMO

Previous work has shown that mice exposed to dibutyl phthalate (DBP) adsorbed onto multi-walled carbon nanotubes (MWCNTs), via tail vein injection, displayed black lesions in their lungs. To investigate the mechanism causing this toxicity in the lung tissue, we performed an experiment with rats, exposing them to DBP adsorbed onto MWCNTs via a tail vein injection for 14 days. The results revealed pulmonary edema and greyish-black lung tissue in the MWCNTs and the MWCNTs + DBP combined exposure groups. In the combined exposure group there was evident alveolar fragmentation and adhesion, and lung tissue sections showed significant levels of black particles. Sections of the non-cartilaginous region of the trachea had significant folding of the pseudostratified ciliated columnar epithelium and marked thickening of the submucosa. In broncho alveolar lavage fluid, the number of leukocytes (WBC), lymphocytes (Lym), neutrophils (Neu), and eosinophils (Eos), as well as levels of immunoglobulin E (IgE), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), and interleukin 1ß (IL-1ß) were all significantly higher. TNF-α, IL-6, signal transducer and activator of transcription 3 (STAT3), and α-smooth muscle actin (α-SMA) mRNA expression were all elevated in the lung tissue. The combined exposure group, which had considerable airway remodeling, had a greater degree of tracheal constriction and luminal narrowing, according to the results of the α-SMA immunofluorescence assay. According to these experimental findings, the exposure to both MWCNTs and DBP seemed to have a synergistic effect and exacerbated rats' impaired respiratory function that resulted from exposure to MWCNTs alone.


Assuntos
Nanotubos de Carbono , Ratos , Camundongos , Animais , Nanotubos de Carbono/toxicidade , Dibutilftalato/toxicidade , Dibutilftalato/metabolismo , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Pulmão , Inflamação/metabolismo
20.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003314

RESUMO

The increasing attention that carbon-based nanomaterials have attracted due to their distinctive properties makes them one of the most widely used nanomaterials for industrial purposes. However, their toxicity and environmental effects must be carefully studied, particularly regarding aquatic biota. The implications of these carbon-based nanomaterials on aquatic ecosystems, due to their potential entry or accidental release during manufacturing and treatment processes, need to be studied because their impacts upon living organisms are not fully understood. In this research work, the toxicity of oxidized multi-walled carbon nanotubes (Ox-MWCNTs) was measured using the freshwater bivalve (Corbicula fluminea) after exposure to different concentrations (0, 0.1, 0.2, and 0.5 mg·L-1 Ox-MWCNTs) for 14 days. The oxidized multi-walled carbon nanotubes were analyzed (pH, Raman microscopy, high-resolution electron microscopy, and dynamic light scattering), showing their properties and behavior (size, aggregation state, and structure) in water media. The antioxidant defenses in the organism's digestive gland and gills were evaluated through measuring oxidative stress enzymes (glutathione-S-transferase, catalase, and superoxide dismutase), lipid peroxidation, and total ubiquitin. The results showed a concentration-dependent response of antioxidant enzymes (CAT and GST) in both tissues (gills and digestive glands) for all exposure periods in bivalves exposed to the different concentrations of oxidized multi-walled carbon nanotubes. Lipid peroxidation (MDA content) showed a variable response with the increase in oxidized multi-walled carbon nanotubes in the gills after 7 and 14 exposure days. Overall, after 14 days, there was an increase in total Ub compared to controls. Overall, the oxidative stress observed after the exposure of Corbicula fluminea to oxidized multi-walled carbon nanotubes indicates that the discharge of these nanomaterials into aquatic ecosystems can affect the biota as well as potentially accumulate in the trophic chain, and may even put human health at risk if they ingest contaminated animals.


Assuntos
Corbicula , Nanotubos de Carbono , Poluentes Químicos da Água , Animais , Humanos , Corbicula/metabolismo , Antioxidantes/metabolismo , Nanotubos de Carbono/toxicidade , Ecossistema , Estresse Oxidativo , Glutationa Transferase/metabolismo , Água Doce , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...